Predicting the time derivative of local magnetic perturbations
نویسنده
چکیده
Some of the potentially most destructive effects of severe space weather storms are caused by the geomagnetically induced currents. Geomagnetically induced currents (GICs) can cause failures of electric transformers and result in widespread blackouts. GICs are induced by the time variability of the magnetic field and are closely related to the time derivative of the local magnetic field perturbation. Predicting dB∕dt is rather challenging, since the local magnetic perturbations and their time derivatives are both highly fluctuating quantities, especially during geomagnetic storms. The currently available first principles-based and empirical models cannot predict the detailed minute-scale or even faster time variation of the local magnetic field. On the other hand, Pulkkinen et al. (2013) demonstrated recently that several models can predict with positive skill scores whether the horizontal component of dB∕dt at a given magnetometer station will exceed some threshold value in a 20 min time interval. In this paper we investigate if one can improve the efficiency of the prediction further. We find that the Space Weather Modeling Framework, the best performing among the five models compared by Pulkkinen et al. (2013), shows significantly better skill scores in predicting the magnetic perturbation than predicting its time derivative, especially for large deviations. We also find that there is a strong correlation between the magnitude of dB∕dt and the magnitude of the horizontal magnetic perturbation itself. Combining these two results one can devise an algorithm that gives better skill scores for predicting dB∕dt exceeding various thresholds in 20 min time intervals than the direct approach.
منابع مشابه
Multi fluidity and Solitary wave stability in cold quark matter: core of dense astrophysical objects
Considering the magneto-hydrodynamic equations in a non-relativistic multi uid framework, we study the behavior of small amplitude perturbations in cold quark matter. Magneto-hydrodynamic equations, along with a suitable equation of state for the cold quark matter, are expanded using the reductive perturbation method. It is shown that in small amplitude approximation, such a medium should be co...
متن کاملLocal Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملNew Dynamic Balancing System Based on Magnetic Interaction and Software Removal of some Perturbations
The purpose of this paper is to present a new type of dynamic balancing system, having a driving solution of the rotating part based on magnetic interactions. The magnetic system also plays the role of an elastic bearing. In the first part of the article is presented the technical solution which allows the dynamic balancing evaluation depending on the radial displacement between two disks with ...
متن کاملA Dissipative Integral Sliding Mode Control Redesign Method
This paper develops a new method of integral sliding mode control redesign for a class of perturbed nonlinear dissipative switched systems by modifying the dissipativity-based control law that was designed for the unperturbed systems. The nominal model is considered affine with matched and unmatched perturbations. The redesigned control law includes an integral sliding-based control signal such...
متن کاملMagnetohydrodynamic Free Convection Flows with Thermal Memory over a Moving Vertical Plate in Porous Medium
The unsteady hydro-magnetic free convection flow with heat transfer of a linearly viscous, incompressible, electrically conducting fluid near a moving vertical plate with the constant heat is investigated. The flow domain is the porous half-space and a magnetic field of a variable direction is applied. The Caputo time-fractional derivative is employed in order to introduce a thermal flux consti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014